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Apparent fractality emerging from models of random distributions
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The fractal properties of models of randomly placed n-dimensional spheres (n=1,2,3) are studied
using standard techniques for calculating fractal dimensions in empirical data (the box counting and
Minkowski-sausage techniques). Using analytical and numerical calculations it is shown that in the
regime of low volume fraction occupied by the spheres, apparent fractal behavior is observed for
a range of scales between physically relevant cutoffs. The width of this range, typically spanning
between one and two orders of magnitude, is in very good agreement with the typical range observed
in experimental measurements of fractals. The dimensions are not universal and depend on density.
These observations are applicable to spatial, temporal, and spectral random structures. Polydisper-
sivity in sphere radii and impenetrability of the spheres (resulting in short range correlations) are
also introduced and are found to have little effect on the scaling properties. We thus propose that
apparent fractal behavior observed experimentally over a limited range may often have its origin in
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underlying randomness.

PACS number(s): 64.60.Ak, 05.40.+j

I. INTRODUCTION

In recent years the study of fractal structures has been
an active field of research both theoretically and exper-
imentally [1-9]. In theory, a variety of algorithms and
dynamical models that produce fractal sets have been
introduced. Typically, in these models one can define an
asymptotic limit in which the set exhibits fractal behav-
ior on an arbitrarily broad range of length scales. One
can then approach this limit by a process of gradual re-
finements of the set, which may involve either an increase
in system size or a decrease in the minimal object size.
In the case of empirical fractals observed experimentally
the situation is different. For these fractals the range over
which they obey a scaling law is restricted by inherent
upper and lower cutoffs. In most experimental situations
this range may be quite small, namely, not more than 1
or 2 orders of magnitude [10]. Nevertheless, even in these
cases the fractal analysis condenses data into useful re-
lations between different quantities and often provides
useful insight [2-5].

Motivated by the yet largely inexplicable abundance
of experimentally observed fractals, we consider in this
paper the apparent fractal properties of systems that are
governed by uniformly random distributions. The choice
of random systems is justified by the abundance of ran-
domness in nature, and by the fact that uniform random-
ness is a convenient limit, on top of which correlations
can be introduced as perturbations. Although a purely
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random system cannot be fully scale invariant, it may, as
we show below, display apparent fractality over a limited
range. The width and the cutoff values of this range seem
to be in good agreement with the typical width and typ-
ical cutoffs observed in experimental measurements (be-
tween one and two decades), unlike the case with models
that are inherently scale free.

To illustrate these ideas we consider a model in which
n-dimensional (n = 1,2,3) spheres of diameter d are
randomly distributed in an n-dimensional space in the
regime of low volume fraction occupied by the spheres.
In three dimensions (3D) our definitions coincide with
ordinary spheres, while for n = 2 (2D) we consider disks,
and for n = 1 (1D) rods of length d. In the basic model
the positions of the spheres are uncorrelated and they are
thus allowed to overlap. We then extend the model to
the case where there is a distribution of sphere radii and
examine the effect of this distribution on the fractal prop-
erties. We also examine a version of the model in which
spheres are not allowed to overlap, thus introducing short
range correlations between sphere positions. This class
of models may approximately describe spatial distribu-
tion of objects such as craters on the moon, droplets in a
cloud, and adsorbates on a substrate. In particular, the
one dimensional model may describe the level distribu-
tion in energy spectra of quantum systems and the zero
set of random temporal signals. Therefore, such models
may be at the root of empirical observations of fractals
in experiments and data analyses, dealing with processes
governed mainly by randomness [10]. As fractality is usu-
ally revealed by applying various resolution analyses, we
also address the question of whether our observations are
method dependent.

Two of the most commonly employed resolution anal-
ysis methods are the box-counting (BC) and Minkowski-
sausage (MS) techniques [1,11]. The fractal properties
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of these models are studied here both analytically and
numerically, within the BC and MS frameworks. The
analytical solution is exact except for the case of impen-
etrable spheres in n > 1 dimensions where some approx-
imations were needed.

In the box-counting procedure one covers the embed-
ding space by nonoverlapping boxes of linear size r,
and then counts the number of boxes N(r) that have
a nonempty intersection with the (fractal) set. A fractal
dimension Dpgc is declared to prevail at a certain range,
if a relation of the type

Ngc(r) ~ r~Dsc (1)
holds, or equivalently, if the slope of the log-log plot
Dgc = —slope {log; o7, log;o[NBc(r)]} (2)

is found to be constant over that range. In the MS case
[11] one draws an n-dimensional (n=1,2,3) Minkowski
sphere (M sphere) of radius R around each point in the
set under consideration, and calculates how the volume
V of the union of all spheres changes under a variation of
R. The set is considered fractal with a dimension Dys,
over a range of scales, if

V(R) ~ R"~Pws, (3)
or equivalently, if
Dys = —slope {log,oR,log,o[V(R)/R"]} (4)

is constant within this range. The BC and MS methods
are known to be identical from the mathematical point
of view [11], where the limits r, R — 0 can be taken.
Their equivalence from the physical point of view, under
the constraints of finite cutoffs, is not obvious. While
it is clear from Egs. (1)—(4) that both methods employ
resolution analysis, in which the number of occupied “res-
olution units” (boxes or spheres) has to be determined as
a function of the resolution magnitude (box length or M
sphere radius), there are slight differences between the
two methods, which are due to both geometrical differ-
ences and the presence of cutoffs.

Using a resolution analysis one should be aware of the
existence of physical cutoffs. This is especially important
in the structures considered below, which are not fractal
in the rigorous mathematical sense. We will show that
the log-log plots of the functions N(r) and V(R) dis-
play linear behavior between these physical cutoffs. The
slope in this range can be interpreted as a fractal dimen-
sion (FD). The existence of this scaling behavior between
physically relevant cutoffs is a central motivation for the
study of the random models presented below.

The paper is organized as follows: in Sec. II we con-
sider the basic model of penetrable spheres where all the
spheres are of equal size, and calculate the BC function.
From the analysis of this function we obtain the non-
trivial linear range and extract the apparent FD. The
generality of this model is then demonstrated using an
information theory argument. In Sec. III we generalize
the analysis to the case where the spheres are not equally
sized but exhibit various size distributions and examine
the effect on the apparent fractal behavior. Certain cor-

relations are then introduced in Sec. IV where the case of -
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impenetrable spheres in considered and the conclusions
are given in Sec. V.

II. THE MODEL OF RANDOMLY DISTRIBUTED
SPHERES

A. The 1D model

In this model M rods of length d < 1 are randomly
placed on the unit interval (Fig. 1) [12] such that the
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FIG. 1. Typical realizations of random placements of rods
of size d (shaded with center dot) in the penetrable (a) and
impenetrable (b) cases. Also shown is a division into “boxes”
(vertical lines). The figure also represents the zero set of a
temporal series of signals of width d, or a spectrum of ran-
domly positioned energy levels with uncertainty width d. (c)
Excluded area in the case of placement of disks in 2D. The
excluded area consists of the box of side length r, four quar-
ter circles of diameter d, and four rectangles rd. This is just
the convolution of the box and a circle of diameter d. (d)
Illustration of counting procedure used in our probabilistic
arguments: For a box of length r to remain unintersected,
no rod center may approach its ends closer than a distance
of d/2. Hence a total length of r + d must remain free. (e)
Counting procedure in Sec. IID: Distance between the “test
points” « is larger than d: for both points zo and zo + = to
be empty, a total length of 2d must be excluded. (f) If z < d,
a rod falling in between the two points may overlap both, so
a length of only = + d is excluded.
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positions of the rod centers are chosen from a uniform
random distribution. The rods are mutually penetrable,
namely, overlaps are allowed. The BC function N (r) will
now be derived. This function gives the number of boxes,
for given box size r, which have a nonempty intersection
with the set. For a large enough number of rods (of the
order of 100 in the present case), the deviations from the
expectation value (N(r)) are negligible and edge effects
are unimportant. Let p denote the probability that a box
of size r intersects a rod of length d. Then for a total of
r~! boxes,

(N(r) =E. (5)
Following Refs. [13,14] define the probability q; that after
random placement of the first rod, a given box remains
unintersected. Neglecting edge effects, this implies that
the center of the rod must be at least a distance of d/2
away from either edge of the box [Fig. 1(d)]. A total
length of r» + 2(d/2) is, therefore, unavailable for place-
ment without intersection. For a uniformly random dis-
tribution it follows that

@ =1-(r+ad). (6)

The next rods are placed independently, which means
that after placement of M rods, the probability that the
box is still unintersected is

1=0.1, d=10"%, M=10*

1=0.01, d=10"°, M=10"
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FIG. 2. Comparison of simulation results (circles) to the
theoretical prediction of Eq. (8) (solid line) for the number of
intersected boxes as a function of their size in the 1D pene-
trable rods case. The coverage is 7 = 0.1 and the rod length
is d/L = 1075, The cutoffs are manifested as the two knees in
the graph. The lower bound 7o is seen to be indeed located at
r = d. The upper bound r, is at » = d/n — d, also conforming
with the prediction in the text. The agreement between the-
ory and simulations is excellent over the entire range. Inset:
Same with 7 = 0.01 and d/L = 107°®. Note the increase in
the range of linearity.
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g=[1—(r+d)]". (7)

Finally, the probability of at least one intersection is
p =1 — g, and therefore

(N == [1- 1= (r+a)™]. ®)

This is the one dimensional BC function for randomly ad-
sorbed, mutually penetrable rods [10]. Numerical simu-
lations of the model along with the theoretical prediction
of Eq. (8) are shown in Fig. 2. The excellent agreement is
evident. The parameters d and M are independent, and
are limited only by the restriction n < 1, where n = Md
is the coverage of the line. We find that for large M
(here M > 100) changing d and M while keeping 7 fixed,
merely translates rigidly the BC function in the log-log
plane.

In Fig. 3, the BC function is shown in a range between
cutoffs, together with a linear regression. This is the
range that is commonly measured in experimental work.
The special significance of these cutoffs is discussed be-
low. Notice the nearly linear appearance, extending over
close to 1.5 decades.

B. Extension to 2D and 3D

In the two dimensional model one places disks of di-
ameter d on the unit square, so that for a given box of
area r? to remain unintersected, no disk center may fall
within the area shown in Fig. 1(c). Thus, a total area of
7% + 4[37 (d/2)?] + 4(r d/2) is excluded for placement of
the first disk center. Therefore in this case the probabil-
ity of the box to remain empty is

on=0.1

.
=3

FIG. 3. The simulation results (circles) for the number of
intersected boxes N(r) vs r in the experimentally relevant
range are shown along with a linear regression fit for coverage
n = 0.1 (obtained for d = 107°, Ny = 10*). This is the
experimentally relevant range that is typically used to obtain
the FD.



53 APPARENT FRACTALITY EMERGING FROM MODELS CF ... 3345
G=1— (rz N i‘ﬂ' &2 4+ 2r d) ' 9) the boxes are larger than the average gap between rods:
r1 =1/M —d, (14)

The next disks are placed independently, leading to

(N(r)) = ;12- {1— [1 - (1‘2+2rd—+— %wdz)}M}. (10)

Similarly, for 3D one considers independent placement
of spheres, and the excluded volume for sphere cen-
ters is that formed by convolution of a cube of side r
and a sphere of diameter d, which is 73 + 6(r2d/2) +
12[r 37(d/2)?] + 8[% #7 (d/2)3]. One then obtains

m:l—(ﬁ+3ﬂd+%5dﬁ+%f>, (11)
and

(N(r)) = T%{l— [1— <r3+37'2d+ 3—;—7%12
M
+%f>} }. (12)

C. Cutoffs, range of linearity, and the fractal
dimension

1. Cutoffs

We will now study the BC function N(r) and examine
the possibility of fractal-like behavior. For simplicity we
will first concentrate on the 1D case, but the conclusions
apply to 2D and 3D as well.

For mathematical fractals displaying full scale invari-
ance, the log-log plot of N (7) versus r can form a straight
line with a fractal slope over an unlimited range of scales
in the asymptotic limit. For the set we consider, this is
clearly not the case as in Fig. 2: there are “knees” beyond
which the slope approaches 1. This is due to the existence
of lower and upper cutoffs, ro and 7, respectively. These
cutoffs correspond to relevant physical limits of observa-
tion. Here, the smallest feature is of size d, and so the
finest resolution is of that size. No additional informa-
tion is obtained by reducing r below ro = d, where D
approaches the trivial limit of 1 as  — 0. To see why
this is so, suppose, for convenience, that the center of
each rod is located at a point connecting two adjacent
boxes: then halving the box doubles the number of in-
tersected boxes if r < d, with the result that D must
approach the limit of 1 as » — 0. When the centers of
the rods are located arbitrarily, the lower cutoff will not
be sharply located at d. Nevertheless,

To = d (13)

is a good estimate for it. As for the upper cutoff ry, it
is the size beyond which practically all boxes intersect at
least one rod, where again D — 1. This happens when

which is therefore an approximate upper cutoff. We thus
have the approximate range rg < r < r;, where the mea-
surement is properly tuned to measure inherent scaling
behavior, if it exists. For scaling behavior to be ob-
served, there must be a minimal range of apparent lin-
earity [Eq. (2)]. The size of such a range and the extent
of linearity displayed by the BC function in it are con-
sidered below.

2. Range of linearity

The standard experimental procedure is to apply a lin-
ear regression analysis on the log-log presentation of the
scaling range. The linear regression line is constructed to
go through the inflection point [r;, N(r;)] of the log-log
plot of Eq. (8). The dependence of the range of linearity
A on the coefficient of determination R? (measuring the
quality of the linear description) is then explored.

The range of linearity is approximately given by A =
2[log,¢(r;) —logyo(r0)]. Applying a linear regression anal-
ysis on the log-log plot of the BC function, we evaluated
the slopes and actual ranges of linearity under these con-
straints, with different values of R? imposed. Typical
results are shown in Fig. 4. For instance, about two
decades of linear behavior can be observed for a required
value of R2 of below 0.97. Examples of experimentally
observed fractal objects exhibiting several orders of mag-
nitude of linearity are rare; the vast majority of reported
fractality spans 1-2 orders of magnitude [2-8,10,15]. It is
important to emphasize that, in fact, we are mimicking
in our calculations the common practice of searching and
reporting FD’s in empirical data.
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FIG. 4. The range of linearity A of Eq. (2), in a linear re-
gression analysis. The range of linearity decreases as higher
quality regression is required (see text). The results presented
are valid in all dimensions, but it should be remembered that
the same coverage corresponds to different interparticle dis-
tances in different dimensions.
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The convention for the smallest meaningful scaling
range is one decade [16]. Given this, a simple argu-
ment yields the maximum allowed coverage: By us-
ing the estimates above for the cutoffs, ¢ = d and
ry = 1/M —d = d(1 — n)/n, one observes that a range
A = logyg(r1) — logyo(ro) = logyo[(1 —n)/n] of at least
one decade, requires that < 1/11. It follows that the
apparent fractality in our model is restricted to n < 0.1.
The range between the cutoffs grows as the coverage is
decreased, as observed in Fig. 2.

In addition to the width of the range between the cut-
offs, the quality of the linear fit within this range, mea-
sured by R? should also be considered. One can limit
the range of linearity by imposing a lower bound on R2:
obviously, the range decreases as R? increases (Fig. 4).
Also note from this figure that for a given range the qual-
ity of linearity grows as the coverage is increased, or as
the slope of the BC function between the cutoffs (i.e., the
FD) approaches 1 (Fig. 2). This happens because of the
smooth merging with the slope beyond the cutoffs, which
is trivially 1. We thus conclude that the two cutoffs limit
the width of the linear range for high coverage while the
R? criterion limits it for low coverage. As a result, the
range of scales in which we observe apparent fractality is
typically between one and two orders of magnitude.

3. Fractal dimension

The apparent FD shown in Fig. 5, for an imposed value
of R?% = 0.995, rises monotonically from 0 as more rods
are added. This is an important aspect of the model: it
does not predict a universal (specific) FD, but the whole
allowable range of FD values. The regression results are
further compared in Fig. 5 to an analytical equation, ob-
tained by calculating the logarithmic derivative of N(r)
at the estimated middle point 7. = \/rory:

d(log,o[N (r)]) l

(1) _
P = "y iogyo[1/r])

{1-tn+ v = mm}"
L= {1+ V@M

(15)

1 VA=

We use an estimate for the middle point (r.) rather than
the exact result (r;), since r; cannot be given analytically.
The almost symmetric S shape of the log-log plot in the
scaling region assures that r. is a good estimate for r;.
As seen in Fig. 5, the FD predicted by Eq. (15) is an
accurate lower bound to the regression result.

By using (1+z/N)Y — e® as N — oo, Eq. (15) may be
simplified in the “thermodynamic limit,” while keeping
n finite. One then obtains

n(1—mn)

exp[17+\/—7;(1“—n~)] —1.

DY =1- (16)
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FIG. 5. Apparent fractality (FD) as computed by linear
regression with a relatively high (0.995) coefficient of deter-
mination, in the case of rods. The predictions of the analytical
equations, Eqgs. (15) and (65), serve as accurate lower bounds.
The prediction for the FD of the penetrable and impenetra-
ble rods cases is seen to differ only marginally, indicating that
the dominant contribution to the FD comes from the pene-
trable (i.e., totally random) rods case. The lowest coverage
shown corresponds to the lowest molecular densities observed
in nature: 10 cm™? in intergalactic space.

Notably, the expression for D](31()J depends on 7 alone. In
the limit of small 7, one can further simplify Eq. (16) and
obtain

n 1/2

Expressions for Dg()j and D}(33()3 may be derived from
Egs. (10) and (12) for the 2D and 3D cases. These, as
well as a discussion of their cutoffs and range of linearity,
are deferred to Sec. III A 2, where a more general model
is treated.

D. Absence of correlations

Since fractal objects typically exhibit some correla-
tions, one might wonder whether the finding of an appar-
ent FD in our model is also due to some hidden correla-
tions within a certain window of resolution. For instance,
it might seem plausible that the finite extent of the rods
introduces a correlation, for if a point on the line belongs
to a certain rod, then a point at a distance z < d is likely
to belong to the same rod. However, correlations at a
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scale z < d below the lower cutoff are, rightly so, typi-
cally not measured. Furthermore, as we show next, the
correlation exponent for & > d vanishes. This will prove
that the emergence of an FD in the penetrable rods case
is not due to the presence of correlations, but entirely
due to the scaling displayed by the underlying uniform
distribution.

A correlation exponent v is associated with a given set
if a correlation function c¢(x) has the following power-law
form over a sufficiently large range:

c(x) ~z7". (18)

An exact expression for this function may be derived for
penetrable rods. Let 6(xo) be the local density at the
point xo on the line. That is, 8(x9) = 1 if zo belongs
to a rod, and zero otherwise. The correlation function is
defined as

c(z) = (0(z0) O(x0 + ), (19)

where () denotes either an ensemble average (at fixed zo),
or an average over rg. Assuming ergodicity, we choose
to calculate the latter. Only pairs of points (zo,zo + )
such that both §(z¢) and 0(xzo+z) are 1 contribute to the
average. We thus require the simultaneous probability:

P(z,z9) =Pr[(0(zo+z) =1) N (6(z0) =1)]. (20)

The correlation function is then
1
o() =/ dzo 0(x0) 6(zo + 7) P(x, 7o), (21)
0

where one can set 6(zo) = 6(zo + ) = 1. Neglecting
edge effects, P(z,zo) does not depend on zg, since we
are considering a statistically homogeneous medium (or
stationary process). In what follows, therefore, zg is con-
sidered to be any convenient reference point, though none
of the results depends on its location. With this general
choice of zg, one obtains from Eq. (21):

c(x) = Pyo(z) = Pr(6(zo + ) =1) N (6(zo) =1)].
(22)

To evaluate P, (), consider a modification of the ar-
gument that led to Eq. (7) : pick two “test points” at
random on a line of length L and denote their respec-
tive positions z¢9 and zo + . Now consider randomly
placing rods of length d on the line. The events that are
complementary to both points (zg, o+ ) being occupied
are (1) that at least one is unoccupied (with probability
Q1), and (2) that both are unoccupied [Q2(z)]. Clearly
Q. already accounts for Q2(z), so that

Ppy(z) =1~ [2Q1 — Q2(x)]- (23)

The evaluation of @, is a repetition of the argument lead-
ing to Eq. (7), with a vanishing box size (r = 0). Thus,

Qi=1-dM e (24)

when M — oo. Q2(z) requires that no rod center is
placed within a distance smaller than d/2 to either test
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point [see Figs. 1(e),(f)]. When x > d, this clearly ex-
cludes a total length of 2d from possible placement of rod
centers. When z < d, a length of only z + d is excluded,
due to overlap of the two inner segments. In all other
respects the argument leading to Eq. (7) (with r = 0) is
again repeated, so that

Qz(z) = {1 - [d+ s(a)]} — e7Pl4HeE), (25)

where p~! = 1/M is the average distance between rod

centers, and

d, = >d,
s@=10 224 @

Combining Egs. (22)—(26), one finally obtains for the cor-
relation function:

1 —2e7" 4 e,
c(z) = 1—2e~7 4 e Me"P2,

z>d

T < d. (27)

Thus for ¢ > d, ¢(x) is constant, i.e., the correlation ezpo-
nent vanishes (a result obtained numerically by Meakin
and Deutch [17]). However, the nontrivial range of the
similarity dimension starts at d, and hence cannot possi-
bly be due to correlations. These exist, not surprisingly,
for z < d, but even there they decay ezponentially (with
a characteristic length of 1/M), and not as a power law,
as required for fractality measured by the scaling of cor-
relation functions.

This completes the demonstration that the nontrivial
result we obtained for the similarity dimension of pene-
trable rods is not due to correlations. The elements of
this demonstration are applicable also to the more gen-
eral model presented in the next section and are not re-
peated there: the absence of correlations holds for all
penetrable cases treated in this study.

E. Generality of the model

In this section arguments are presented showing that
the model of randomly placed, mutually penetrable
spheres introduced in Sec. II is very general in the sense
that it is a prototype of a much larger family of ran-
dom processes. Being minimalistic in assumptions, the
model is in fact a generic one for random processes.
An information-theoretical approach is now employed to
show this, using the fact that the only assumption en-
tering the model is the knowledge of a mean quantity.
An important feature of the information-theoretical ap-
proach is that it extends the model from spatial to tem-
poral random sequences, and even to energy-level distri-
butions [18]. Thus, in an adsorption process the relevant
mean quantity is the average density of adsorbates and
one seeks the distribution of nearest-neighbor distances.
An equivalent situation is that in which one knows the
average period of a time signal and is interested in the
distribution of intervals between successive crossings of
the time axis (the “zero set”). A finite width d is then
the signal width at the crossings. Yet another case is
that of spectral-level distribution (where d is the uncer-
tainty bandwidth), for which it is well known that spac-
ings of quantum energy levels in classically nonchaotic
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systems are exponentially distributed [19]. Indeed, it will
be shown that an exponential distribution of the inter-
vals between the centers of the spheres is an inherent
characteristic of our model. It shall then become clear
that spatial, temporal, and spectral random processes
fall into the same class. The spatial and temporal cases
differ only in that a time process must be ordered on the
time axis, while the positions of “events” on a spatial
axis are not necessarily ordered. There are, however, N!
possible arrangements in the spatial case, obtained by in-
terchanging the labels of events on the spatial axis. The
time process may be considered as the one ordered set
out of all these permutations. Relabeling is all that is
required to map a spatial process to one in time, and
clearly this does not affect the statistics of positions or
intervals. Furthermore, it is well known [1] that the FD
of the actual time signal can be deduced from that of
its zero set. Relying on the equivalence just discussed,
we choose in what follows for concreteness to work on the
spatial process of placement, but one should keep in mind
that the discussion applies just as well to time processes
and energy-level spacings.

1. Information-theory argument

Consider now the derivation of the distribution satis-
fying the assumption of knowledge of the mean. In the
present case this is the known average placement density

=" (28)

(or equivalently, this may represent the average period
of a time signal.) The arguments presented here for 1D
are again easily generalized to 2D and 3D. Following a
standard information-theory argument [20], the resulting
distribution P(z) of distances « between neighboring ad-

sorbate centers is obtained by maximizing the missing
information S,

S = —/ P(z) In P(z) dz, (29)
0
where the constraint of knowing (z) can be written as
oo
(z) = f z P(z)dz. (30)
0
To this one must add the normalization constraint
/ dz P(z) = 1. (31)
0

Using Lagrange multipliers A and u, the maximization of
S can then be written in terms of a functional F' as

F[P(z)] = — /0 ~ do {P(2) n P(2) + A P(x)
+pz P(z)}, (32)

whose variational derivative is
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6F=—/ dz {InP+1+ XA+ uz}6P.  (33)
1]

The arbitrariness of § P then requires the vanishing of the
term in curly brackets, or

P(z) = e~ (N, (34)

Inserting this into the constraint equations, Egs. (30) and
(31), yields the distribution of nearest-neighbor distances

1

P(z) = — e~ /(=) 35
@ =13 (35)
The appearance of an exponential distribution is not sur-
prising: it is the Maxwell distribution when the average
energy is given as the constraint in the canonical ensem-
ble, or it shows up as the distribution of time intervals
between successive radioactive decays, where the mean
lifetime acts as the known constraint. It remains to be
shown, returning to the adsorption language, that given
this exponential distribution of intervals between the cen-
ters of the rods, the adsorbate positions are uniformly

distributed.

2. The position distribution

It is a standard exercise in probability theory to show
that a uniform distribution of positions leads to an ex-
ponential distribution of intervals (see, e.g., Ref. [21],
or recall the argument for the time of flight of a parti-
cle undergoing random collisions with a given mean free
path). It is now shown that the opposite holds as well,
namely, that the exponential distribution of intervals, de-
rived above from an information-theory argument, leads
to a uniform distribution of positions. The argument that
led to the derivation of the exponential distribution of in-
tervals, Eq. (35), assumed that only the mean distance
between points is known, and that this is the only pa-
rameter of relevance. Therefore, it was in fact implicitly
assumed that successive placements are independent (for
otherwise additional constraints should have appeared,
reflecting the dependence of the distribution of intervals
on the number of previous placements). Let P(z) de-
note the probability density of finding a point between =
and z + dz after a single placement. Given that there is
a point at zo, consider the conditional probability den-
sity g(zo + z|xo) of finding the nearest-neighboring point
between zg + z,z9 +  + dz. This can be expressed as

1
9(zo + z|w0) = @ e ?/®) P(zo + z)dz, (36)

where exp(—x/{z))/(z) is the probability density of find-
ing a gap of length z. But since this exponential probabil-
ity depends only on the (non-negative) distance between
neighboring points, it is clear that nothing prevents in-
terchanging the roles of zg and z¢ + z; i.e. it must hold
that

g(zo + z|x0) = g(zo|z0 + T), (37)
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or, explicitly,

1 e~/ @) Pz + z)dz = 1 e~/ @ P(xo)dzo. (38)

() (z)

One is at liberty to choose dz = dzo, so that P(zq) =
P(zo+z), which holds for every z. Therefore P(z) is con-
stant, i.e., the positions are uniformly distributed. This
result followed from the exponential distribution that was
derived under the minimalistic assumption of knowledge
of the mean of a relevant property. Drawing on the gener-
ality of this derivation, we conclude that a uniform ran-
dom distribution of adsorbate centers is a generic model
of random processes in space and time, where one only
assumes knowledge of the mean. A uniform distribu-
tion of adsorbate centers is, however, exactly what was
assumed in the adsorption model in Sec. II, for which ap-
parent fractality was detected. Fractality may therefore
be expected for any other random system that can be
characterized by its mean.

One may further employ the above information-theory
formalism in order to derive the distributions appropri-
ate to knowledge of higher moments, if correlations are
present in the system.

III. POLYDISPERSED MUTUALLY
PENETRABLE SPHERES

A. The model

The basic model introduced in Sec. II is now gener-
alized, by allowing polydispersivity in radii. That is,
we consider a model of randomly placed n-dimensional
spheres with a distribution of radii P(a). The radii are
assumed to be chosen independently from P(a). In 1D,
this may, e.g., represent a random spectrum with levels
exhibiting a distribution of lifetimes. In 2D, such systems
may approximately describe, for example, the formation
of metal clusters on metal surfaces [22-24]. In 3D one
might consider the distribution of atmospheric or inter-
galactic dust aggregates. Thus the polydispersed case
represents a very wide class of systems, whose possible
scaling properties and apparent FD are quantities of in-
terest. Both the BC and MS functions and FD’s will
be calculated, first generally, and then for a number of
specific but broadly used radii distributions.

1. Minkowski analysis

The Minkowski function and dimension corresponding
to the model of polydispersed spheres introduced above,
is calculated next.

a. The Minkowski function. Let all lengths be nor-
malized to the total linear extent of the surface L. For

o™ (R) = (™ (R)) =1 — / Hdaz P(as) (

—1- [/daPa) ( ””’"(“R)")]
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a given probability distribution of radii P(a), consider
the determination of the MS function for M randomly
placed spheres with a specific realization of radii out of
P(a), a = (a1, a2, ...,aprr). The MS function for this real-

ization, v (R), is the volume of the union of spheres of
radius R centered at all points in the set under consider-
ation. This amounts to increasing the intrinsic radius of
a sphere a; to a; + R, and then calculating the volume of
the union. Let the total volume of the embedding space
be V;. It is convenient to work with the normalized vol-
ume a,(,")(R) = V(")(R)/Vt The calculation of a{™ (R)
is very similar to the calculation of the BC function. A
point is randomly chosen in the embedding space, and
one calculates the probability qas that after placement of
M spheres with radii a, the chosen point is not included
in the volume of any of the spheres. The probability ¢, for
this to happen after random placement of the first sphere
is proportional to the volume remaining after subtracting
the volume of this sphere,

Yn(ar + R)"
=1l 39
q1 ‘/t ’ ( )
where
2, n=1
Yp =< m, n=2 (40)
4n/3, n=3

is a geometrical factor associated with the volume of an
n-dimensional sphere. The next placements are indepen-
dent, so that

qM=ﬁ<1—W). (41)

=1

Now, 1—gqay is the probability of finding the chosen point
in the set, which on the other hand is equal to the nor-
malized volume of the set. Thus,

M n
aP@R) =1-]] <1 - ma_;;liﬂ) , (42)

=1

where p = M/V; is the number density.
Next, one averages over all possible realizations of
radii. Let

f(a)) = / P(a) f(a) da (43)

denote the average of any function of the radius. Then
the expectation value of the normalized volume, when
each realization of radii a is weighted by its probability
Hgl P(a;) da;, is given by

pYn(a; + R)™
M

:1—(1—%—@2)1\4. (44)
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In the limit of large M one finally obtains
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a™(R) =1 — e~Pn{@a+R)™) (45)

and, explicitly for each dimension:

a(l)(R) =1—exp[—-2p(R + (a}))],

a@(R) =1 —exp [—-7rp(R2 + 2R(a) + (az))] ,

W) = 1~ exp |~ T olR + 3Ra) + 3R() + (&) (46)

b. The fractal dimension.
which is found to be

dlogyo (™ (R)/R™) _ o P (Ekey R R¥ (@) exp[—pyn((a+ R)")]

To find the FD according to Eq. (4), we evaluate the logarithmic derivative of a(™ (R),

: (47)

dlog,,(1/R) 1 —exp[-pyn((a+ R)™)]
In analogy with the discussion in Sec. II C, one may expect the cutoffs to be found approximately at
Rog=(a) and R; = %p_l/" — {a), (48)

compared to rg = d and r; = p'l/”

— d for BC. The difference from BC by a factor of 2 is due to the appearance

of radii as opposed to box lengths (which are equivalent to diameters). As in Sec. IIC 2, we define the FD to be the
slope at the estimated middle point R, = /Rp R; of the scaling range,

ny _ dlog;o®log,o(a™ (R)/R™)
D = : (49)
dlog,4(1/R) R=R,
which yields
D) —1_ m(1—m) 1 v’ ¢,
MS = =
exp [n1+ w/Th(l—Th)] -1 exp (7)1+V11/2 1/2) -1
L6 A7 23 g,
MS — 4 ’
(W L Cr e
2/3,, _ 2y1/2 2/3 1/2 ,3/2
DG =3 (A2 — (21)%) " + 2v5"" @3 + 33" " ¢y (50)

where for convenience a number of parameters are defined
as follows:

M = pn (a™),

o ar

n Mn (a") )
¢n = %’lez/n - V”];/n’

_ 3 (a2>(a>
H =373 <a3> )
la2))3/2
T -

The parameter 7, is simply the coverage [25]; the other
parameters measure various moments of the radius dis-
tribution.

The expressions for DI(JI‘; can be simplified somewhat
for the case of a constant radius, whence (a™) = a™, and
consequently 7, = v,,. Note that the FD contains use-
ful information about the first n moments of the radius

exp (773 + (273 5 — (20)2) Y2 4 02/3 gy + L1/ g/z) 1

distribution. In the next section the BC function of the
same model of polydispersed radii is solved for, in order
to compare the MS and BC methods.

2. Boz-counting analysis

a. The BC function. Once again, take all lengths to
be normalized to the total linear extent of the surface
L. Repeating the averaging arguments used to arrive
at Eq. (44), combined with the derivations of Egs. (8),
(10), and (12), leads to the following result for the BC
(density) function in the polydispersed case:

N®™(r) = (N{V(r))

M
1 = —
== 1—(1—%;;,3“#((1 k)) }

(52)
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Here r is the normalized box length, p = M/V; is the
number density, and

Yy k=0
1, k=n

Brn = 2n, k=n-1 (53)
37, k=1,n=3

is introduced for convenience. Taking the limit of large
M, one finds
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to be quite similar.

b. The fractal dimension. Proceeding with the calcu-
lation of the FD, evaluation of the logarithmic derivative
yields

dloglo(N(")(r)) _
dlogyo(1/7) B

14 (22:1 k Brn Tk<a'n_k>)
exp (p Yo Brn T*(am7F)) — 1"
(55)

As usual, the FD is defined as the slope at the estimated
middle point r, = /71 between the lower and upper

N(")(r) [1 — exp (—p Zﬂkn rk (a"—k))} . (54) cutoffs, 7o = 2(a) and r; = p /™ — 2(a):
k=0
D™ — w (56)
Although at first sight this result may seem to differ sub- BC ™ dlogo(1/r) ’
stantially from that for the MS function «(™(R) [Eq. =fe
(45)], the two will be compared in Sec. IIIB 2 and shown  with the result
J
D}(31) -1 vVm(l—m) —1— 1/2 1/2
C - ’
exp [171+ (1 —m) ] - exp (n1+Cl/2 i/z) -1
D@ g 2/4 1z C1/2¢'
BC = )
exp (772 +<3/4 ;/2 2C1/2¢ ) 1
1/2
D(3) 4 [(/\/)2/3 _ (3,_02] / +<2/3¢ + 2 1/2 3/2 (57)
BC — )
exp {773 [(A)2/3 u — (3p)?] 1/3 2C2/3 Y3 + 6C1/2 ;’/2} -1

where we defined, for convenience,

2, n=1
6, =<8, n=2
48, n =3,
_ (ﬂ>"
=3 ey
_ ~sl/n _ ,1/n
Yo = 25n G,
, 371)2(a2)]3/2
X = g (BT 733223))] . (58)

Here §,, is a geometrical factor associated with the vol-
ume of an n-dimensional cube (or box). Note the similar-
ity of Cny¥n, A to vy, dn, A, respectively, of the previous
section.

The BC result for the one-dimensional case is identical

1

to the MS result. This is due to the fact that in 1D both
a box and a sphere reduce to a line segment. For n = 2,3
the geometrical factors are different (v, for the MS and
6, for BC). In Sec. IIT A 3 these issues will be considered
in detail.

3. The distribution functions

In this section the effect of polydispersivity is examined
explicitly, by assuming various functional forms for the
radii distributions.

To assess the influence of polydispersivity we con-
sidered four types of common continuous distributions
of radii, as well as a simple discrete bimodal distribu-
tion. These are compared for reference with the case of
monodispersed radii treated for BC in Sec. II. The dis-
tributions considered are

Py(a) = el (normal),

Py(a) = (1)/ bofo) —~3bsa< (@43 (uniform)

Pg(a) = %e-a/@ (exponential [26]), (59)
Ps(a) = mb_@/ba((“)“b)/be_“/b (Schulz [27]),

Pp(a) = {g;{gjg;; Sb]_ =”)1b]_:p” (bimodal),

where b is in all cases a measure of the width of the distribution. A comparison of the distributions for two combinations
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of (a) and b values is shown in Fig. 6, where they can be seen to differ significantly. In order to understand the difference

between these distributions in the present context, note that D](;c) and Dl(v?; are determined by the first n moments
of the distributions. Therefore it is useful to summarize the differences as follows: let y, = (a™)/(a)™ and z = b/(a).

Then
y2 = 1+2%, ya=1+322 (normal)
2
y2 = 1+ %1 ys =1+ % (uniform)
Y2 = 2, yzs =6 (exponential) (60)
y2 = 142, y3=1+32+22? (Schulz)
yn = p[l — (1 —p)z]* + (1 —p)(1+p2)" (bimodal).

However, the effect of assuming these different radii dis-
tributions on the MS and BC functions, and on the re-
spective FD’s is marginal in spite of the differences among
them, as shown next.

B. Results

1. Range of linearity and the effect of dimensionality

In order to meaningfully compare the results in dif-
ferent dimensions, it is most convenient to fix the av-
erage distance (z) = p~'/™ between sphere centers.
Note that this implies different coverages, since from
Eq. (51): 17, = yn({a)/{z))™. In particular, since typ-
ically (a) < (z), n3 will be much smaller than 7, for the
same average distance. With this choice, a general esti-
mate for the range of linearity, independent of the dimen-
sion, may be found. Suppose {x) = 10¥(a); using the val-
ues for the cutoffs, Ro = (a) and R; = 3p~*/™ — (a), one
has A, < log;oR:1 — log;gRo = logy, (3(z)/(a) — 1) =
logqo (%10’c —1) ~ k—03 for k > 1. As discussed in
Sec. IIC 2, the range of linearity is limited both by the
distance between cutoffs, which tends to increase when
the coverage decreases, and by the quality of the linear
regression, measured by R?, which tends to improve as
the coverage increases. These trends are independent of

Normal
—-=Uniform
-=-~ Exponential

——~ Schulz
w— bimodal (p=0.5)

P(a)

FIG. 6. Probability distributions P(a) used for polydisper-
sivity in radii of penetrable spheres model: Normal, uniform,
exponential, Schulz, bimodal. All distributions have the same
average (a) and width b, defined in the text. Shown here is
the wide case, (a) =1, b= 0.9.

the embedding space dimension and therefore in all di-
mensions we observe apparent fractality within a range
of 1-2 orders of magnitude.

2. Comparison of boz-counting and
Minkowski-sausage results

It is comforting to find that, by and large, the BC
and MS methods of resolution analysis yield very similar
results. This is shown in Fig. 7, where the two meth-

BC: log[N(r)]; M: log[a(R)/(v,R")]

box—counting (N(r))
== Minkowski (0(R); R=r/2)

-13.0 : - :
-2.0 0.0 2.0 4.0
log,,(r), log,(R)
FIG. 7. Comparison of box-counting (log,,[N(r)] vs

log,,(r)) and Minkowski (log;,[a(R)] vs log,,(R)) functions
for monodispersed, mutually penetrable spheres in n =1,2,3
dimensions. The linear density is fixed at p; = 0.05/a, where
a = 1 is the sphere radius. A meaningful comparison is
achieved by plotting the Minkowski function normalized to
the sphere volume (y,R"™), with R = r/2. In 1D BC and MS
are identical. Differences do develop, albeit for ruler sizes (7,
R) beyond the cutoffs, for n = 2 and n = 3, which depend on
(a®) and (a®), (a®), respectively, and have different geometri-
cal factors due to the use of boxes and M spheres. Note that
N(r) and a(R) are normalized to the total number of boxes
and to the total volume, respectively.
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ods are compared for the monodispersed case (quanti-
tatively similar differences result for polydispersivity).
When properly normalized (see caption), the methods
are identical in 1D, and differ slightly in 2D and 3D. We
shall see below that the FD values do not differ by more
than 0.05 for 2D and 0.1 for 3D either, with MS giving
the consistently lower values (see Figs. 10 and 11 below).
We attribute the small variance between the two meth-
ods to the finite size of the basic building blocks, and
to the differences in the geometrical factors v, and é,,
which determine the details of lowering the resolution of
observation. As the difference is so small, in the next
section the entire discussion is held in terms of BC.

3. Effect of polydispersivity on the BC function

The BC function is displayed as a function of yard-
stick size in Figs. 8 and 9 for the distributions consid-
ered above, for a representative density of spheres, cor-
responding to an average intersphere distance (z) of 20
sphere radii (see captions for details). The average ra-
dius (a) and width b were set equal for all distributions.
The value of b = 0.9(a) was chosen so as to reflect a very

n=2, <a>=1, b=0.9, p=0.05"

—— monodispersed

b —-— bimodal
‘\\\::\ — -~ exponential
N ---- normal
RN e Schulz

N, RN —— uniform
N

log;oN(r)

0.0 1.0 2.0
log,,(n)

FIG. 8. BC functions for polydispersed, mutually penetra-
ble spheres in n = 2 dimensions. As in Fig. 7, the linear
density is p1 = 0.05/(a) (note that p has dimensions of in-
verse area). The distribution parameters are (a) = 1, b = 0.9.
As seen clearly in the inset, the exponential distribution lies
highest, followed by Schulz, normal, bimodal, uniform, and
finally the monodispersed case (no distribution). Since the
lower cutoff is expected at ~ log,,1 = 0, it appears that the
effect of polydispersivity is to decrease the range of linearity
somewhat.
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broad distribution. Values of b larger than (a) are not
permissible since this would lead to negative radii. An
observation of significant importance is that the qualita-
tive (and to a large extent also the quantitative) nature of
the results is unaffected by changing 6. The BC function
for the 1D case depends only on the average radius, as is
clear from Egs. (44) and (54), and hence no difference is
observed between distributions with the same (a) in the
1D case. For 2D (a?) enters, which depends, in turn, on
the specific distribution [Eq. (59)]. For 3D also {a3®) en-
ters, so that a stronger dependence on the distributions
results. However, as seen in Figs. 8 and 9, the differences
in BC function for different distributions set in only at
small r values, close to the lower cutoff, and are always
bounded.

The two most important questions in the context of
apparent fractality relate to the slopes and the ranges of
linearity. The former is dealt with in detail in the next
subsection. As for the range of linearity of the scaling
region, it appears that this is slightly decreased when
polydispersivity is compared to monodispersivity.

4. Effect of polydispersivity on fractal dimension

The FD is displayed as a function of coverage in
Figs. 10 and 11 for the distributions of Eq. (59). The
average radius (a) and width b were set equal for all dis-
tributions, with b = 0.9(a) chosen again so as to reflect
the unfavorable case of a very broad distribution (see

n=3, <a>=1, b=0.9, p=0.05"

-1.0 T
— monodispersed
~ —-— bimodal
. -~ @xponential
-~-=-=- normal
~—— Schulz
——— uniform
z
=3
L
-7.0 | 1
-9.0 - i
0.0 1.0 2.0 3.0

log,,(r)

FIG. 9. Same as Fig. 8, but in n = 3 dimensions (p has
dimensions of inverse volume). The asymmetry between the
lower and upper cutoffs is apparent.
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captions for details). Changing among distributions is
seen to have only a minor effect on the FD, for the entire
coverage range. A somewhat stronger effect is observed
for 3D than for 2D. For 1D, as seen in Egs. (50) and (57),
the FD depends only on the average sphere radius (i.e.,
rod length), which was taken identical for all distribu-
tions, so that they necessarily all produce the same FD.
However, the second and third moments {a2), (a®), which
determine D(?) and D®) through Egs. (50) and (57), do
depend on the particular distribution, and must affect,
therefore, the FD. Comparing the moments of Eq. (60)
reveals why the FD is so robust with respect to change
of radius distribution or its parameters: recalling that
z < 1 in order to assure positivity of the radii, observe
that y,, are typically close to 1 (the monodispersed case)
in all cases, except for the exponential distribution. (For
the bimodal distribution it is straightforward to show
that 0 < y, < 1 (recall that 0 < p < 1), and is close
to zero only for very small p and 2.) However, even for
the exponential distribution, it is seen in Figs. 10 and
11 that although the corresponding FD is indeed some-
what displaced, it is still very close to that of the other

n=2, <a>=1, b=0.9

2.0 T r
——— M: Normal
— BC:

M: Uniform
——— BC:
-~ ~-- M: Exponential
---- BC:
— — - M: Schulz
——- BC:

M: No Dist.
—— BC:

M: Bimodal

BC: (p=0.5)
e hard disks (BC)

o
T

fractal dimension
P
g

0.5

1.45
-0.66 -0.60

0.0
-15.0 -10.0 -5.0 0.0

log;n,

FIG. 10. Fractal dimension, obtained as slope of the BC
and Minkowski functions at the estimated middle points 7,
R., for polydispersed, mutually penetrable spheres in 2D, as
a function of the coverage, log;,n2. The minimal coverage is
as in Fig. 5. Displayed here are the broad distribution results:
{(a) = 1, b = 0.9(a). Small differences are observed among the
distributions. The order is opposite to that in Fig. 7, with the
Minkowski dimension consistently somewhat smaller. Also
shown is the FD for impenetrable disks, which as expected,
is slightly larger. The lowest coverage shown corresponds to
the lowest molecular densities observed in nature: 10 A/cm?®
in intergalactic space.
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distributions. Thus, it is the combined effect of the rel-
atively small dependence of the moments on the under-
lying radius distribution in the parameter range of inter-
est, together with the even further suppressed sensitivity
of the FD to these dependences, that is responsible for
the robustness of the FD. The insensitivity of the model
to polydispersivity is in support of our proposition that
the random adsorption model is generic: its features are
virtually unaffected by (strong) perturbations in this com-
monly encountered way.

IV. SOLUTION OF THE IMPENETRABLE
SPHERES CASE

A. The model

Consider now a different model, which adds correla-
tions on top of the model of equisized, mutually pene-
trable spheres by imposing impenetrability on a system
of n-dimensional spheres at equilibrium [28]. Impenetra-
bility creates a negative correlation in sphere positions.
This model is fully solvable for n = 1, and approxi-
mately solvable with high accuracy for n = 2,3. It rep-
resents an important class of processes with correlations,
such as models of hard-sphere liquids, energy-level repul-
sion in quantum systems that are classically chaotic [19],
Langmuir-type adsorption, etc. As demonstrated below,
the correlation due to impenetrability merely modifies
the apparent fractal character already induced by the

n=3, <a>=1, b=0.9
3.0 r

——— M: Normal
— BC:
M: Uniform
---— BC:
-~ ~-- M: Exponential
TTET ----BC:
£ — — - M: Schulz
——- BC:
4 —— M:No Dist.
— BC:
M: Bimodal
BC: (p=0.5)
e hard disks (BC)

2.0

fractal dimension

)

1.62 wld o f Jii
15 -14 13 -12 -11 -10

0.0

~21.0 -11.0 -6.0 -1.0

log,gns

-16.0

FIG. 11. Fractal dimension, obtained as slope of the BC
and Minkowski function in 3D. The details are the same as in
Fig. 10 and the results are qualitatively the same as in 2D.
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random nature of the problem. We limit ourselves to a
BC analysis of this problem.

B. Derivations for 1D case

Consider first the 1D case of impenetrable rods: the
BC function is calculated by employing a result derived
using thermodynamic arguments by Helfand, Frisch,
and Lebowitz [29], and using a statistical argument by
Torquato, Lu, and Rubinstein [30]. They show that the
probability of finding a cavity of length ! containing no
rod centers, in a system of a large number of impenetra-
ble rods of length d each, is

g™ = (1—n1)exp [(Tg—i%? (fi - 1)] (61)

for I > d. In performing BC, for a box of length r to
remain empty, no rod center may fall within d/2 from
either side of the box, so that I = r + d. ¢() may be
rewritten, in the limit of a large number of rods (M — oo
at fixed coverage), as

l n 1M
A _ (1 _ _(t_ 1 L
q (1—m) [1 (d 1) T M}

r )M. (62)

1—-m

=(1-m) (1 —
Having p = 1 — ¢ and using Eq. (5) the expected number

of intersected boxes is
, M
. 63
- 771) ] (63)

As in the penetrable rods case, one can now use Eq. (2)
(with the slope calculated at 7 = r.) to calculate a lower
bound for the FD. We obtain

/1
D:].—’Ol — -1
!

N (EV/v/ (V. e
1—(1—n1)[1—m/M]

<N(r>>=}{1—(1—m> (1-1

This can again be simplified for large M:

my/1/m—1 ' (65)

P e [V m)] - G-

C. Derivations for 2D and 3D cases

So far all the results were based on exact calculations:
We now consider an approximate solution for 2D and

3D impenetrable spheres. Full analytical solutions are
at present impossible: exact results for the probability
of finding a cavity containing no disk or ball centers af-
ter their placement, as employed in Eq. (61) above, are
not available because the n-particle probability densities
are not exactly known. Nevertheless, Refs. [30,31] pro-
vide some accurate approximations for the probability of
finding a two- or three-dimensional spherical cavity of ra-
dius ! in an equilibrium system of hard spheres of radius
a.

1. BC function

In the context of BC, one in fact requires the probabil-
ity of finding a cavity with the shape of the convolution
of a box and sphere [see Sec. II and Fig. 1(c)]. This will
be undertaken in a future study; at present we will set-
tle for an approximation of the cavity by spheres. The
important quantity to conserve in this approximation is
the cavity volume, since this is what actually enters the
probabilistic argument at the root of the calculation of
the BC function. If one simply takes the spherical cavity
radius as the geometric mean of the sphere radius plus
half box length, and sphere radius plus half box diagonal,

n(r) = [(g+a) (%\/ﬁ+a>]1/2, (66)

the real cavity volume [see Egs. (9) and (11)] is overes-
timated by no more than 10% in 2D, and (except for a
sharp maximum of 80% for 0.2 < r/a < 5) by no more
than 20% in 3D. This will suffice for the present purpose
of an approximate treatment of the 2D and 3D impen-
etrable spheres problem. Now, the results of Ref. [30]
for the empty-cavity probability in n dimensions can be
expressed conveniently as follows:

@™ (r) = (1= 1) exp ((—1{—’—’;—)—

). (o)
where the subscript n on the coverage 7 serves to remind
that the same coverage defines different combinations of
sphere sizes and densities for different dimensions [see
Eq. (51) in the monodispersed case]. The functions f,
depend on the particular approximation used, but have
the general form

N, 7 _
fn(r) = Zaj () @i @ = S5 (68)
7=0
The o!™ are, for n = 2 (impenetrable disks), using the
scaled-particle theory of Reiss, Frisch and Lebowitz [32]:

a(()z) =2n-—1, ag2) = —4n, a?) =4, (69)
whereas for n = 3, using the Carnahan-Starling result

[33], Ref. [30] finds
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1
o) =507 =T +2), of =12,

Qg
(70)
ol = —6n(3+17), of) =8(1+n).
Next, the BC functions are given, as usual, by
1
(n) = = (1 -agm™
(N®() = — (1-4™). (71)

The apparent FD’s predicted by these results are dis-
cussed next.

d(logm[N(") (m))
d(logo[1/7])

D(") —_ Tin

=n —

1
2(1—mn,)t

Y0 127908 (1) G{[1 + ha(1a)][L + V/7ohn (1)]37/272
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2. Fractal dimension

For the 2D and 3D cases, the FD is obtained
by evaluating the logarithmic derivative at r{® =
[2a (p”l/" — 2a)] 172 Using Eq. (51), the estimated mid-
dle point of the scaling range can be rewritten as

1/2

1/n
=2hn(n), ha(n) = l:% (h) - 1:| . (72)

Mn

™

a

The hard-sphere radius a cancels out and the FD for
n = 2,3 is found to be given by

b (1) [VR(2hn () + 1) + 1]

" exp [/ (1 — 7)7] Y0 2770l () {[1 + b (ma)][1 + V/h (12)]}372] = (1 = 1)

It should be noted that D™ are functions of 7, alone,
which indeed, in contrast to the penetrable spheres case,
is exactly the volume fraction of space occupied by the
impenetrable spheres.

D. Results

1. Effect of impenetrability on the BC function and
on the range of linearity

Figure 12 shows the plot of Eq. (8) for the penetra-
ble rods case, together with the expression for (N (r)) in

7.0

==ese penetrable: 1=0.01
6.0 M. —— impenetrable
. ---- penetrable: n=0.1
e —-— impenetrable

log,[N(n)]
o
o

»
°

3.0

2.0 n
-7.0 -6.0 -5.0 -4.0 ~-3.0

log,,(n)

FIG. 12. Comparison of box-counting predictions in pene-
trable and impenetrable rods cases. The results for penetrable
[Eq. (8)] and impenetrable rods [Eq. (63)] virtually coincide
for n < 107%. For 5 = 0.1 a barely noticeable difference
develops. d = 107° in both cases.

(73)

the 1D impenetrable rods case, Eq. (63). The behavior is
qualitatively similar in both cases, and virtually indistin-
guishable for low coverages. Figure 12 thus demonstrates
the primary role of pure randomness in the appearance
of fractality, even in the presence of correlations, at least
at coverages below 10%.

The impenetrability case results for 2D and 3D are
shown in Figs. 10 and 11, respectively, along with those
for penetrable spheres. As in the 1D case, the effect
of impenetrability is virtually unnoticeable in terms of
the FD. Once more, it appears that the scaling content
of this highly nontrivial system is already contained to a
very large extent in its penetrable counterpart.

2. Effect of impenetrability on fractal dimension

The result for 1D is shown in Fig. 5. As expected,
the FD rises to 1 faster than in the penetrable rods case:
when no overlap is allowed, the line is filled up at lower
coverages. The important observation is the large range
of coverages for which the penetrable and impenetrable
rods FD’s nearly overlap. For all practical purposes,
therefore, the FD is very close in these two cases, which
differ significantly in the extent of correlations present
in the respective systems: the fractal content of the im-
penetrable rods geometry is already contained to a large
extent in the associated random penetrable rods case.

V. CONCLUSIONS

We have shown in this paper that randomness in its
most elementary forms generates apparent fractal struc-
tures over 1-2 decades, between a lower cutoff—the el-
ementary building block—and an upper cutoff, which
is approximately the average distance between building
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blocks. We adopted an empirical-like approach to the cal-
culation of fractal dimension: we deliberately considered
sets bound within natural finite cutoffs, which display
scaling behavior over a physically relevant range. We be-
lieve this approach to be both useful and necessary, if a
direct contact between theory and experiment is to be
achieved. This led us to consider several simple, but
widely applicable models of random phenomena, with
and without correlations, obtaining as one of the main
results, an analytical solution for the apparent fractal di-
mension of models of randomness. The models studied
are convenient starting points for other, more elaborate
ones of random phenomena. It is argued that the models
we have studied are, in fact, prototypical of a large class
of spatial, temporal, and even spectral random phenom-
ena. The methods introduced here should be useful in
the study of further cases of random phenomena, with
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other types of disorder and correlations. To conclude,
we would like to point out that apparent fractal behavior
is expected to occur for a more general class of distri-
butions. Generally, the log,,N(r) versus logio(1/r) plot
includes lines of slope D = n (n = 1,2, 3) beyond the up-
per and lower cutoffs, which are connected by an interval
of slope D < n, which depends on the specific distribu-
tion.
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